
r

T

NASA-CR-192761 /_-_/
/s P

Integrating Interface Slicing Into
Software Engineering Processes

...... Jon Beck
West Virginia University Research Corporation

August 15, 1993

,O

-t"

!

O,
Z

tO
WI=

U
t-

O

,_4J
WU_g
_t-E

Z_¢O
J-4 I-- _.-
k-U-@C:

wO C

ZZW

C

,-4_O :3

N.J OO

Z
I LLI _-_ t,.

lU.W E
_Z _®

4"
O
,O
0D
,-4
O

Cooperative Agreement NCC 9116

=_ Research Activity No. RB.10:

........ RBSE: Component Classification Support

- NASA Technology Utilization ?rogram

NASA Headquarters

Research Institute for Computing and Information Systems

= University o f Houston-C/ear Lake

____J I II

................WHITE PAPER

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

CompuUng and InformaUon Systems {RICIS} In 1986 to encourage the NASA

Johnson Space Center {JSC) and local industry to actively support research
In the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an Integrated
program of research in advanced data processing technology needed for JSC's

main missions, Including adminlstraUve, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to Jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission Is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and
develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission is being
implemented through interdisciplinary Involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universlUes and re-

search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help
oversee RIC1S research and education programs, while other research

organizations are involved via the "gateway" concept.

A major roleof RICIS then Isto llndthe best match ofsponsors, researchers
and research objectivestoadvance knowledge inthe computing and informa-

tionsciences. RICIS, working jointlywith Itssponsors, advises on research

needs, recommends principalsforconducting the research,provldcs tech-
nicaland administrative support to coordinate the research and Integrates

technical results into the goals ofUHCL, NASA/JSC and Industry.

RICIS Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Jon Beck of West Virginia University. Dr.
E. T. Dickerson served as RICIS research coordinator.

Funding was provided by the NASA Technology Utilization Program, NASA

Headquarters, Code C, through Cooperative Agreement NCC 9-16 between the

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

research coordinator for this activity was Ernest M. Fridge HI, Deputy Chief of the

Software Technology Branch, Information Technology Division, Information

Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

Integrating Interface Slicing
Into Software Engineering Processes

Jon Beck

Department of Statistics and Computer Science
West Virginia University

Morgantown, WV 26506
beck@cs.wvu.edu

15 August, 1993

1 Introduction

Interface slicing is a tool which has been developed to facilitate software engineering. As

previously presented [5], it has been described in terms of its techniques and mechanisms.

In this paper, we consider the integration of interface slicing into specific software

engineering activities by discussing a number of potential applications of interface slicing.

The applications we discuss specifically address the problems, issues, or concerns raised in
[3]. Because a complete interface slicer is still under development, these applications

must be phrased in future tenses. Nonetheless, the interface slicing techniques which

have been presented can be implemented using current compiler and static analysis

technology. Whether implemented as a standalone tool or as a module in an integrated

development or reverse engineering environment, they require analysis no more complex

than that required for current system development environments. By contrast, conven-
tional slicing is a methodology which, while showing much promise and intuitive appeal,

has yet to be fully implemented in a production language environment despite 12 years of

development.

2 Code and Executable Size Reduction

Interface slicing has the ability to substantially reduce the size of both source code and

executable programs by eliminating unused code. Conventional compiler technology

spends considerable effort in performing optimizations to improve the speed and reduce

the size of programs [1]. However, these efforts have previously been almost exclusively

confined to very local transformations such as the use of constant propagation to remove
one of the clauses of a branch statement. Interface slicing can be incorporated into

present compilers to perform size optimization in a way which has not previously been

performed.

Beyond compiler optimization, however, a reduction in actual size of reused components

without any reduction in available functionality has significant implications for the

practicality of repository-based component reuse. Domain engineers can develop compo-
nents which have the full functionality deemed proper, and even redundant functionality

accomplished by different techniques, without any concern about the resulting component

size. Subsequent interface slicing will ensure that only the functionality specifically

needed in each system will be incorporated into each system. It is well established that

smaller component size facilitates component reuse, but small component size also
captures less domain and architecture knowledge [6]. Interface slicing allows large

components with much functionality and captured domain knowledge in the repository,

while also allowing a system which reuses them to be as small as if it were composed of

custom-designed components.

Bec. anse of the package structure and emphasis on composition-based modular reuse, Ada

is very amenable to interface slicing. Because of the very large installed base of Ada code,

representing substantial development investment and intellectual capital of both industry

and government, the potential benefit for efficient reengineering, adaptation, and reuse of

-1-

Ada packages is enormous. Interface slicing is a technique which can substantially
reduce the comprehension required for a package's reuse, and substantially reduce the

size of the software system, in both source and object forms, resulting from reuse.

3 Domain Management and Update Granularity

In the domain_specific, centrally man-

aged reuse repository scenario of soft-

ware development advanced by DoD, a

responsibility of the domain manager
is to keep track of the clients of each

reused artifact, so that the client can

be updated when changes to the arti-

fact occur [10]. Interface slicing eases

the burden of accomplishing this for

the domain manager by providing a

smaller granularity of components for

the repository clients.

To see this, consider the situation in
which clients A and B both use module

M from the repository; M consists of

elements x, y, and z; z is mutually

independent of x and y, while x and y

are mutually dependent. Assume that

A uses the functionality of x and z,

while B uses the functionality y and z.
This situation is illustrated in

Figure l(a). Without interface slicing,

any modification to x, y, or z requires
that both clients A and B be updated

by the domain manager. But with

interface slicing, the domain manager

can more precisely know when each
client must be updated. In this exam-

ple, if x is modified, only A need be

updated, and ify is modified, only B

need be updated. A modification to z

requires updates to both A and B. The
situation with interface slicing is pic-

tured in Figure l(b). For the soRware

development enterprise as a whole,

this finer effective granularity of the

reused components results in f_r less

time spent in re-incorporating modified

components, with the attendant retest-

REPOSITORY

CL lENT A

Yzl
CL I ENT B

(O) MONOL I TH I C COMPONENTS

REPOSITORY

I M N
Ixyzl I--i

II \\

CLIENT A CLIENT B

(b) SL I CED COMPONENTS

Figure 1 Clients of a repository component

-2-

. °

ing, revalidating, and recertification of the client software systems.

4 Verbatim Reuse vs Customized Components

The benefits of using centrally managed and engineered components strongly favor

verbatim reuse, that is, reuse of components as supplied by the domain engineer without

local modification by the application engineer. This protects the purity of the domain

model and greatly reduces the possibility of modification-induced error, as well as

simplifying the process of future modification. Unfortunately, this tends to preclude the

use of customized components. Interface slicing provides a mechanism for supplying

customized components by customizing them automatically at system composition time,
without manual changes, in effect combining the benefits of both verbatim reuse and

customized components.

This can be viewed as analogous to the way that high-level source code maintains logical

program design, while the optimizing pass of the compiler is allowed to violate the logical

design by performing all sorts of macro expansions, loop unrollings, and common sub-
expression eliminations, combining the benefits of high-level logical design and optimized

code. But the logical design is never actually violated, because the base source code,

which the programmer sees, is never altered. In the same way, interface slicing does not

alter the base component which is supplied by the domain engineer, but rather performs

its function at compile time, just as does the compiler's optimizer.

5 Reverse Engineering

In the previous section we mentioned program modification. Maintenance modifications

are an integral part of software engineering; making modifications requires a large

amount of program knowledge and comprehension to be successful. Interface slicing can

aid in program knowledge and comprehension in two specific ways. First, to the extent

that interface slicing can be used to reduce the overall size of a program, it is useful for

program comprehension, as in general a smaller program is easier to comprehend than a

large one, other variables being held constant. But more importantly, especially for the

reverse engineering of legacy code which was originally created without the benefit of an
interfaceslicer,interfaceslicingcan be incorporated intoa toolwhich generates a report

detailing1) the elements of one module which another module references,both directly

and transitively,and 2) which other elements of a module can possiblybe influenced by

modificationsto each specificmodule. This latterfunctionalityisalso provided by

Gallagher and Lyle'sposet of staticslices,but at a differentlevelof granularity.

In a more complex example of the use of slicingforreverse engineering, consider the

common desire to update and modernize a legacy system by a transformation from an old

strictlymodularized and hierarchicaldesign implemented in an old language lacking

information hiding mechanisms to a system characterized by an object-orienteddesign

and implementation. Object-orienteddesign ischaracterized by very differentdesign

methodologies and criteriathan were used forlegacy hierarchicaldesigns. In particular,

the behavior of an objectwhich isencapsulated within the objecttends to cut across the

-3-

boundaries of traditional modularization in a manner very reminiscent of the way that

slicing cuts across the same boundaries. Eichmann [11] has suggested that in fact this

resemblance is not coincidence and that slicing can be used specifically to reengineer the

designs of legacy systems into object-oriented designs.

To see this, consider a traditional hierarchical payroll accounting system. Code which
affects an employee is scattered throughout the system, spread widely into different

packages and subprograms. One subprogram calculates the employee's current paycheck,

another subprogram keeps track of the employee's hours allocated to different projects,
while a third is used to update the employee's home address. In a reengineering of this

system into an object-oriented design, Employee might be a class, with each employee an

instance of that class. In this case, all the system's functions which affect the employee

might be encapsulated within the employee objects. Manually searching the old system

for all the code which affects employees is an arduous task. Slicing can help automate

this process. Giving a slicing criterion consisting of all the functionality which affects an

employee, the slicer can project from the system just that functionality, with its support-

ing code, ready to be encapsulated into the new employee object.

6 Issues of Program Design

As explained in [4], the implementation of a module determines the interface slices of that

module. Specifically, the pattern of dependences among the module's elements determines

how many interface slices exist, and the dependence relationships among those slices.

This leads directly to two different ideas relating interface slices to program design. The

first is to use interface slicing as a metric of existing program design. Possible module

characteristics which could be evaluated include reliability, maintainability, portability,

and reusability. The second is to consider how our notions of _good" module design may

change with the knowledge that interface slicing is available in the development environ-

ment. For example, redundant functionality in a module, might change from being
considered an undesirable characteristic to a desirable one were an interface slicer known
to be available.

Many researchers have considered the problem of designing _good _ reusable components
(e.g., [8,12,13]), as well as the problem of what constitutes a _good _ reusability metric

(e.g., [2,7,9]). However, all of this work has been done in the context of assuming that the

entire reusable module will be incorporated into a software system under development,

without consideration of a tool such as interface slicing. Adding interface slicing to the
development environment adds a new variable, potentially causing some assumptions and

conditions to change, and thus potentially requiring a re-evaluation of what is considered

to be "good _ program design.

7 Extensions of Interface Slicing

In the discussions of interface slicing in [5] the terminology and examples implied an Ada

environment. Clearly, the ideas have a much wider reach than one language, but more

work is needed to delineate the core language-independent features, and those which are

-4-

°. °, °
i ° • ° • " ° " "

J

more language-dependent. For example, the extent to which interface slicing can be

profitably applied to C object libraries and FORTRAN subprograms has yet to be explored.

It is well established that the more abstract the artifact being reused, the greater the

payoff from that artifact's reuse in a software development effort. This leads to the idea

that applying the concepts of interface slicing to formal specifications or formal require-

ments would yield greater benefits than claimed here for interface slicing of code artifacts.

This applies as much to conventional slicing as to interface slicing.

We point out that we have phrased this discussion of the interface slicer as though it were

a standalone pre-compilation code transformer; in fact, for effectiveness it should be

implemented as a portion of an integrated development environment, or as one member of
a suite of an integrated toolset, with full access to the libraries and databases of the
environment.

8 Integration of Conventional and Interface Slices

Dynamic and static program slicing have been presented in the literature as competing

technologies. By contrast, interface and static slicing are complementary technologies.

They work at different levels of granularity; the programmatic entities upon which they

operate are different. In an earlier paper [5], we presented experimental evidence that an

interface slicing pass can reduce code size by over 60%. Given the concerns that static

slicing may be difficult to perform on large modules, the possibility exists that a fwst pass

ofinterfaceslicingwillsufficientlyreduce the sizeand complexity of the module to

facilitateeasier staticslicing.However, itispossiblethat a marriage ofthe two tech-

niques in an integrated environment would provide a greater than additive benefit in

terms of system comprehension, regardless of the impetus for that comprehension, than

would be expected by a simplistic first-pass - second-pass concatenation of interface and

static slicing. This is because the two forms of slicing operate at different levels of

program structure granularity, and therefore provide two different views of the program

structure. These two views are not orthogonal, rather they may be likened to two

different levels of magnification along the same axis. Conventional slicing provides a view
focused at the statement level, while interface slicing provides a view focused at the level

of calls and references among subprograms and global variables.

References

[1]

[2]

A. Aho, R. Sethi, and J. UUman. Compilers Principles, Techniques, and Tools,
Addison-Wesley, Reading, MA, 1986.

ASSET. Criteria and Implementation Procedures for Evaluation of Reusable

Software Engineering Assets, The National Software Technology Repository, IBM,
March 1992.

-5-

[3]

[4]

[5]

[6]

[7]

[81

[9]

[10]

[11]

[12]

[13]

J. Beck. "A survey of program slicing for software engineering," White Paper,

NASA Cooperative Agreement NCC-9-16, project RICIS RB. 10, subcontract 118,
April 1993.

J. Beck. "Interface slicing: a static program analysis tool for software engineering,"

Ph.D. Dissertation, Department of Statistics and Computer Science, West Virginia

University, Morgantown, West Virginia, 1993.

J. Beck. "The theory of interface slicing," White Paper, NASA Cooperative Agree-
ment NCC-9-16, project RICIS RB.10, subcontract 118, May, 1993.

T. Biggerstaff and A. Perlis. Software Reusability, Vol I, Addison-Wesley, Reading,

MA, 1989.

G. Boetticher, K. Srinivas, and D. Eichmann. "A neural net-based approach to

software metrics," Proceedings of the Fifth International Conference on Software

Engineering and Knowledge Engineering, (San Francisco), 16-18 June 1993.

G. Booch. Software Engineering with Ada, Benjamin-Cummings, Menlo Park, CA,
1983.

CARDS. Library Development Handbook, Central Archive for Reusable Defense

Software, 7 October 1992.

Department of Defense. _DoD Software Reuse Vision and Strategy, _ CrossTalk, no

37, pp 2-8, October 1992.

D. Eichmann. Personal communication, 1992.

J. Hollingsworth. "Software component design-for-reuse: a language-independent

discipline applied to Ada," Ph.D. Dissertation, The Ohio State University, 1992.

S. Litvintchouk and A, Matsumoto. "Design ofAda systems yielding reusable

components: an approach using structured algebraicspecification,_IEEE Transac-

tionson Software Engineering, vol SE-10, no 5, September 1984.

-6-

